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A THEORETICAL STUDY OF THE MOMENT ON A BODY IN A COMPRESSIBLE FLUID

By CarL Karrax

SUMMARY

The extension to a compressible fluid of Lagally’s
theorem on the moment on a body in an incompressible
fluid and Poggi's method of ireating the flow of compres-
stble fluids are employed for the determination of the
effect of compressibility on the moment on an arbitrary
body. Only the case of the two-dimensional subsonic flow
of an ideal compressible fluid is considered.

As examples of the application of the general theory,
two well-known systems of profiles are treated; namely,
the elliptic profile and the symmeirical Joukowski profiles
with sharp trailing edges.

The effect of compressibility on the position of the
center of pressure is also discussed. In order to deter-
mine this effect, it 18 necessary to calculate the additional
cireulation induced by the compressibility of the fluid for
both the elliptic and the Joukowski profiles. For these
two types of profile, the centers of pressure in the com-
pressible and the incompressible fluids are found to coin-
cide for a definite and fairly small angle of attack, which
8 essentially dependent on the thickness coefficients. For
angles of attack less than this neutral angle, the center of
pressure in the compressible fluid 13 farther from the nose
and, for angles of attack greaier than the neutral angle,
nearer to the nose than the cenfer of pressure in the in-
compressible fluid.

Several numerical examples of both the elliptic and the
Joukowski profiles are given. The results show that,
although the effect of compressibility on the moment and
on the lift may be large, the effect on the center of pressure
Jor conventional profiles 18 mnegligible. Thus, for a
Joukowski profile, the maximum thickness of which is
equal to 18 percent of the chord, the center of pressure
moveg toward the nose a distance equal to only 0.19 per-
cent of the chord, where the angle of attack is 6° and
byfea=0.70.

NOTATION
GENERAL SYMBOLS

£, 4, rectangular Cartesian coordinates in the
plane of the obstacle.
z, ¥, rectangular Cartedian coordinates in the
plane of the circle.
f=E+iﬂ: z=a:+'£y

r, 6, polar coordinates in the plane of the circle.
R, radius vector of a point far removed from
the obstacle and also of a point far re-
moved from the corresponding cirele.
rg, Tadius of circle into which the profile is
mapped.

=T
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o,, 5, components of the velocity in the radial
and the circumferential directions in the
z plane.
v, magnitude of the velocity in the plane of
the obstacle.
e, magnitude of the local velocity of sound.
p, density of the fluid.
p, static pressure of the fluid.
Doy Coy Py Doy COTTesponding magnitudes in the undis-
turbed part of the fluid.
7, ratio of the specific heats (¢,/e,).

2
y.=<%:) » square of the Mach number,

8, angle of attack.
T, circulation about the obstacle.
T
K=21I'T000
L=pw,T, lifting force on the obstacle.
M, moment on the obstacle.
¢, €1, centers of pressure, respectively, in the
compressible and the incompressible
fiuids.

Subscripts ¢ and ¢ refer, respectively, to
the compressible and the incompressible
fluids.

Avg, Ap;, additional velocity components due to
compressibility at a point P(R, §) far
removed from the cirele in the 2z plane.

w, complex velocity potential of the fluid.

‘é—?; complex velocity in the plane of the ob-

> stacle.
A, A, complex and conjugate complex coeffi-
cients, respectively, in the power series
development of ?—; (ses equetion (12)).
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SYMBOLS PERTAINING TO ELLIPTIC PROFILE

¢, semifocal distance.
t, thickness ratio of ellipse (ratio of semi-
minor and semimajor axes).

1—¢ ¢
o’—l—_!_t,--where OG5

tanh a=t
M, N, functions of the thickness coefficient { only
(see equation (24)).

SYMBOLS PERTAINING TO JOUKOWSKI PROFILES

¢, thickness coefficient (see fig. 4).

— ‘ -
h=11
1—e
k=1ri=1—2h

I, J, (see equation (26)).
M, N, functions of the thickness coefficient ¢ only
(see equation (29)).

DERIVATION OF THE FORMULA FOR THE MOMENT

Theodorsen’s method (reference 1) of extending
Lagally’s formula for the force on a body in an incom-
pressible fluid to a compressible fluid may be used to
obtain the corresponding formula for the moment.
The body is fixed in an infinite two-dimensional stream
of a frictionless compressible fluid flowing uniformly in

7
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FicurE 1.—Diractions of tengent and normsl on a contour.

the far field. Then the moment exerted on the body
with respect to the origin of the coordinate system is
given by (fig. 1)

M= f{r njp ds - (D)

where the positive direction of the unit normal vector n
is taken from the boundary into the fluid, p is the
pressure of the fluid, [r n] is the vector produet of the
radius veector r and the unit normal vector n, and ds is
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the element of length along the profile taken positively
in the direction of the unit tangent vector t. With the
directions of the unit tangent vector t and the unit
normasl vector n so chosen that they form a right-hand
system, a positive value for the moment corresponds io
a counterclockwise rotation.

According to one of the generalizations from Gauss’
theorem, it may be shown that

S curl prdS= f][r nlp ds+ fIr n]p ds
where dS is the element of surface in a region 8§ in-
cluded between the obstacle 7 and an arbitrary curve
o enclosing it.
Now . . .
curl pr=[grad p 1]
and, from the Euler equations of motion for steady
flow (reference 1),
. grad p=—1/2 p grad ¢*
Therefore
curl pr=—1/2 p [grad v* 1]

Equation (1) then becomes

M=/, [r n} pds+1/2.f; p [grad #* 1] dS

Since the outer boundary is arbitrary, it may be chosen
to be a large circle so that the vector product [r n]=0.
Hence . .

M=1/2f, p [grad ¥*r] dS

But
grad v*=2 (v grad) v--2 [v curl v)
and
[(v grad) v r]=(v grad) [v 1]
Therciore

M= f, p(v grad){v rldS+ /; p{[¥ curl vIr}dS (2)
According to Gauss’ theorem, if F denotes a scalar
function, then

S div pFvdS=— f; pF(v n)ds— f; pF(v n)ds
But
div pFv=F div pv+4p(v grad)F
Hence’ '
Ji o(v grad) FdS=— /, F div pvdS
— Ji pF(v n)ds— f, oF(v n)ds
From the manner in which F occurs in this formula,
it is clear that the formula remains valid if F is re-
placed by a vector point function, say [vr]. That is,
Js o(¥ grad)[v rldS=J; [r v] div pvdS
+./i plr V(v m)ds+/; plr V](V m)ds
Substituting from this equation into equation (2), it
follows that
M= 1, plr V}(v n)ds-}/, [r V] div pvdS (3)
— /s pir[v curl ¥v]}dS
where J; plr ¥](v n)ds=0 since (v n)=0 everywhere on
the obstacle.t
In the problem considered herein, the compressible
fluid is of uniform velocity 3, in the undisturbed stream

1This formula for the mement may be extended to three dimensions by letting
= denote the reglon of flow between the body and a large sphere enclosing it; ds Ia
then repiaced by de, the element of surface on the outer sphers, and 4S is replaced
by dr, the element of volums in the region of flow », Also, the moment now has
three components and mmst be written as a veetor, L. e, M.
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and, furthermore, is assumed to be irrotational and
free of sources in the region of flow S. The condition
for irrotational motion is simply that curl v=0, and
the absence of sources means that div p v=0. There-
fore, equation (3) becomes

M=/, plrv] (vn)ds 4

where it is recalled that the outer boundary has been
assumed to be a large circle of radius B. The vector
product [r v] is then equal to Rp, and the scalar prod-
uct (v n) is equal to —og since n=—R/R. Therefore

M=—R*J" prapode (5)

This simple expression for the moment about the origin,
of the resultant force acting on the body, can be directly
obtained by considering the rate at which angular mo-
mentum passes out of the region included between the
outer circle and the body. Thus, the momentum per
unit time passing normally through the element ds is
o B vz dp and the arm is R sin vR. The angular mo-
mentum is therefore pR? v sin YR vy de or pR® 25 v, de
and equation (5) follows.

GENERAL DEVELOPMENTS

It may be well to emphasize at this point that the
main problem of this paper lies in obtaining useful
expansions for the velocity components vz and o, of a
compressible fluid.

These expansions are obtsined by making use of
Poggi’s conception of compressible flow. Thus the
basic differential equation for the steady flow of a
compressible fluid may be written as (reference 2}

on 1 o0t
Y +bn =5\ "oF +”"a

The expression on the left-hand side is div v, so that the
expression on the right-hand side may be considered to
represent a source distribution of & strength given by

1
Iz ‘UEE‘['vlb )dE dy

In the plane of the circle into which the profile of the
obstacle is mapped by a suitable conformal transforma-
tion, the strength of the source distribution may be
written as

av2 Daa’l)z

7‘0
U N TN 58 N db ()]

1t'c2

where

r, 0 are the polar coordinates of a point in the

plane z(=z-+1y) of the circle.

)\=%, where rp Is the radius of the circle into
which the profile is mapped.

TR T T T e
potential of the flow.

where ¢ is the velocity
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v, the magnitude of the velocity of the fluid in
the plane of the profile.

e, the magnitude of the local velocity of sound.
Poggi’s method of approximating the flow of a per-
fect compressible fluid past an obstacle is based on the
fact that the incompressible fluid is a good first ap-
proximation. A first approximation for the source
distribution given by equation (6) is therefore obtained
by substituting for z;, v, and #* the values belonging
to the incompressible fluid. It is further assumed that
the Mach number /e, is small so that only terms
involving the lowest order of #y/e, are to be considered.
This assumption then limits the application of the
analysis to stream velocities small in comparison with
the velocity of sound. The disturbances to the main
flow due to the presence of a body in the fluid may,

however, be large.?
The density p and the pressure p of the fluid are
then determined by the following equations (reference

R e I
=pﬂ[1+1/2g<1—%5)+. . ]

p=constant—§pov=’

(M)

—

1 po
Pozt_i_

P-anf +

where the adiabatic equation of state has been adopted.
Also, p=(m/c;)* and v, and v, are, respectively, the
velocities in the incompressible and the compressible
fluids.

It follows from equation (5), with the stipulation that
only terms involving the square of the Mach number are
to be retained, that:

Mo=— B2 %) dp
—goaB (1= (2 2Yd @)

It is clear that the evaluation of the second integral
presents no difficulties, for it involves only expressions
of the well-known incompressible fluid-velocity com-
ponents. The difficulty of the problem lies mainly in
determining the velocity components r; and 7z, for a
compressible fluid. Since the first integral is taken
around a circle whose radius R may be infinite, it is
obvious that the developments for vz/v, and v,/v, in the
neighborhood of infinity need not go beyond the 1/R?
terms.

In order to obtain the series for v:fiy and »,/m, it is
expedient to consider first the effect of a single source
of unit strength situated at & point @(r, 8) in the plane
of a circle. In the presence of a circular boundary of
radius 7y, the velocity induced by a unit source at any

2 In the a&proxlmaﬂon made by Glauert (reference 3), m Is not small compared
with e but the disturbances to the main flow ry ars assumed to be small.
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point P(R,$) external to the boundary is given by
(fig. 2):

y Q(r,6)

P(R,J)

Fioure 2.—Tmage of a simple source with regerd to a oircle.

dw_ ([ 1 1 1
dz  \2p—2q ' 2p—%s 2p

= _Ug+1:vy

where S is the point inverse to @ with respect to the
circle;

2
i
2p=Re®; zo=re?; and zs=%e“.

Then
. 1 1 1
v‘—w’_Re“—re“_}-Re“_r_o’ew Re®
r
or since
(—vpt+ivi)et=—v.+1iv,
for rp<lr<R
7\p
o1 -2
RT2R Ap Ap
1—25 cos. (6—3) -!-—)\-2
+ 1—2202
ﬂ? 1—2XpX cos (6—8)+ A2\
1 %’ sin (9—a)
m=—5
B, A
1—2 €08 (6—9) +_)\§
1 Aph sin (6—3)
B T—2XpX cos (6—8)+ ApiA?
and for R<r<
R2
1 1%

= —5 3
2By o} cos (0—8) s
Ap Ap
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" 1 1— A2\ i
2R1—2Np\ cos (8—8)F AIA2
X sin (6—9)
p— 1 Py
i ;-
R1 —2 cos (e—a)+-7‘—i
Ap AP
1 Ae\ sin (0—8)

TR T—22pA cos (6—38) + AN

where A=ro/r and Ap=ro/R.
Then, making use of the expansion

1—¢
1—2g cos (§—8)+¢

it follows that the components of the velocity induced
at any point P(R, §) by the source distribution given

by equation (6) are:
1(%”)" cos n(B—ﬁ)] d\ db

MR_ ——L f Py P[z
2 [ [T 2R os ne—) Jin ao
'_4% j:J;hF)\TP[%-Fg (As\)* cos n(&-—a)]d)\ dé (9)

1+2Zq" cos n(f—9)

ﬂ-=l

and
2
2: X;_D sin (0 6)
% 4 f f 3d\ db
AT 1— 2 cos (6— 6)+
sin (§—38)
+41rf f 5\ df
X, °08 (6— 6)+_i
# 2 At sin (6—38)
+GJ; .f; Fl—‘Z)\p)\ cos (8—6)-]-)\},2)\2‘1)‘ df (10)
where

vo vala_5

F=( vo DN 5 A 08
The next step is to obtain the Fourier series expansion
of the function F for an arbitrary profile. The profile
is derived from a circle by means of the general con-
formal transformation

e=2' S+t

where _the coefficients a; are, in general, complex. In
order to obtain the velocity of the fluid in the plane of
the profile, it is first necessary to determine the velocity
potential of the flow past a circle (fig. 3). Thus, sup-
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pose that the undisturbed flow is of velocity 7, inclined
at an angle § to the negative direction of the real axis
and that the circulation is denoted by I'. In terms of

yl ¥ 0(71 ,8)
A A
| — |
r P(R,s)
e
()
M . e

To m

< > X

FicurE 3.—Relatfon between z planes employed in general conformal transformation.

the complex coordinate 2, with origin at the center of the
cirele, the potential function of t.he flow past the circle is:

zetf

Also, the variables z and 2’ are con.nected by the equa-
tion

z'=z+me?
Therefore
—ip
T
dt dzd7 dt 1 20,
_2 T_

Substituting for 2’ in terms of z and expanding in
descending powers of z, this expression becomes:

1d (T 1 1
aE =ttt it .. (12)
It follows then, that:
1dv_g 4
) dj‘ -u-o 2t

where the A,'s are, in general, complex.

In order to introduce the angle 6—8&, the general
term of this series is multiplied by e~*¢fe~*™,
Then

1dw & A ™

,70 d? = 1EEE—3)
and

ldw 2, Agh

;a dr = L plg— @9
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Henecs

f(]—t) #—3)
0 k=0

@ « A kA .’e (K
P3P
The real and the imaginary parts of A,Aef»% are,
respectively:

Apdeti-m8 L A A g—tU-r
2

and

. A A 08 A, A gm0
& 2 R

Let
;—k=n

where n changes sign when 7 and % are interchanged
and therefore takes values from —o to .
Then

jthk=n+2k
aund the expression for #*/%?, & real quantity, becomes:

«

S [Ays 08 n(8—8)+Bypsin n(8—8)N"+2 (13)

=0 R
where

Ay -AkAu+kei;6;I;!-‘-4-2kbA pppet
and

Buoa— AbAu+keiM—AkA Y g

2re T

From the definition of n, it follows that:
A—n.,k=Aa.k

and
-B—n.k= '—Bn.k

The terms of equation (13) can therefore be grouped in
pairs, thus:

P _ = = SYIRY
v?-:EknAo't_!_zﬂZ_l cos n(a_a)é -'-‘g-li.,kA i

+2,‘2=_JL sin n(0—8) §B,. AR (14)
Also, from equation (11),
—-—-—(1 \) cos (6—8) cos (51 8)
+(1—M) sin (§—8) sin ¢+ 8)
and (15)
—=(142) cos (6—9) sin (5+8)
+(@1+») sin (§—8) cos (+B8)+AK
where
T
" 2xrmy
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Then, by means of equations (14) and (15), it becomes
a simple matter to aobtain the Fourier series for the
function 7. When the Fourier series for F is substi-
tuted into equations (9) and (10) and all terms con-
taining powers of Ap higher than the second are neg-
lected, it follows, after some rather tedious but element-
ary integrations, that:

Avp_ —ENrlAso c08 (54 B)—Bio sin (48]

Yo

—51do cos (4 8) + KBy log Mo

— i 4us 08 6+8) +3As0 008 6+5)

—~Buosin (-+8) |+ B,
+5 “7\,, cos (3+B) in&-:_lz)&.nﬂ
o Ay cos (3+8)—B,, sin (6+ﬁ)
A e R - (6)
and
A% D Errldyo sin 6+ 8)—Bio cos (3 )]

—£l4o, sin G+ B)+ KA log M

+uv[§Ao,l sin (5-+6) -+ s sin (6-+6)-+3KAs |

2n+t1

)‘Pzn?;n(n+ l)AI 3

+ine sin 6+) 3~

+u)\ ’Z}A”' sin (a+aifgucos ©+8

Use has been made of the following definite integrals
in obtaining Avs/vq:

Ll

Qa7

n=1

f" sin (§—9) sin n(f—38)ds [0 if n=0
o 1—2h cos (6—8)+At ah*tif nx1
r gin (§—8) cos _n(l)—a)d0=o

¢ 1—2h cos (§—8)+A*

The velocity of the compressible fluid in the plane of
the circle then has the following components:

(”") = — (1= cos (6+ fz)+m"z
(18)
(”‘) = (L4 sin 0+ ﬁ)+7~pK+A”‘

The calculation of the moment is facilitated by
expressing the velocity of the compressible fluid in
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complex form. Thus, as in the case of an incompres-
sible fluid, & complex velocity is defined in the following

way:
U
_< R a e 18
Uo 13'0

Then equation (8) for the moment assumes the Blasius
form:

S | 1dw\tdz
M=—Zou R. P.éi(v“ i )
1dwy?

1 2
"Z‘#poﬂos R. P. é(l—: %o RE d!_{d.. (19)

where the integrals are taken around a circle whose
radius R approaches infinity.

Now, from equations (13), (16), (17), and (18), the
expression for 1/p, (dw/dz), may be written as:
1/d ] i
%<£)¢= +1"%’r0 re'e” +4[(A-0A1e_l‘+-zoAle‘p)—

Aoffleﬂ

z—AoAxR’e"’—

+2( 4T —iRroAoA) 5 log A—I'?;-A' "

+—A A ﬁ S+ 1+1KrvoA, i

AoAze 8%
T

ucl 2041 AAen

n-lﬂ(n'l' 1) re»t

_2e7 %2, n+1l A,+1A,+,+‘:7_e_“‘ =, 1 ZnAn-)-z
2 f=in(n42) ™ Ziintl

—2 A -8 Ao

Also, from equation (12) for L gg

_ Ao= e‘ﬁ, A1=7.K7'o, Az= heta2y) Q’E_ i
where a;=>b%*
Therefore

'eKn,e”“9
— e

— o 7'0 e =~ I
) men BRI
2o~ 18 2K’r , bletB=21) —pi2eBiR
+4K2rz% e + o, e ;? - ro
_iKn R Kirle g =Y} _p 2a 21
7 25 ZR’b, 7

bsef(B'H'v)—roze B iK& 2n+1 A ;e
22 32 Rm} n(n+ 1) To it

_23"‘5@ n+1 Ag+1Ag+1 268 A_AH.’

2675 1 %
T2 Sant2) B Ehl
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1t may be noted that this expression is not an ana-
Iytic function of 2, since powers of R occur in some of
the terms.

The first integral on the right-hand side of equation
(19) for Af, then becomes:

1. dw\?
——pgvo’ R. P. é(i‘o P 3} g'dz

———povo R. P. Fﬁ(l dw)(l_l_me" 26’327+ )

=2xb%pe0” sin 2(8+v) +pweI'm cos (B+7)

+4] 3ot sin 2(8+)
1 = 2n+1 A Ann
+2p°v°r R, P.e n-m(n—l—l) ro2n

9z R. P. ie“ﬁg——( ﬁ‘;‘;;},]

and the second integral:
2
—guow R. P. 95(1—1’1 L 9o Esd
=Z[27rb290%2 sin 2(8+7) +pomel m cos (8+7)]

Therefore

M,=M¢(1 +§)+ AT cos (B-7)

+5 [—- spoteTym cos (B+7)

= 2n+l ZHA“.H

a=in(n+1) it

+%pol}org R. P. e

~2npn? R, P. iet S Lt (fﬁ;’;ﬂ,,,] 0)
where M;=2xb%pyry? sin 2(84v)+ aetelsm cos (8+v) is
the moment due to an incompressible fluid. The cir-
culation I' consists of the incompressible part T'; and
the additional circulation AT related to the additional
flow.

Equation (20) for the moment Af, is applicable to
arbitrary proﬁles, but it contains two infinife series
that cannot, in general, be replaced by closed forms.
In the case of a profile for which the conformasl trans-
formation to a circle contains a finite number of terms,
the two infinite series may, however, sometimes be
replaced by elementary funotions. In the following,
two such systems of profiles will be discussed, the
elliptic and the Joukowski profiles.

THE ELLIPTIC PROFILE
It is well known that the Joukowski transformation

r=z+f¥z

maps the circle of radius ¢/2 with its center at the
origin of the z plane into a line segment (—e¢, 0; ¢, 0) in
the ¢ plane. Also, circles concentric with the base
circle are transformed into a family of confocal ellipses
with common focii at (—e, 0) and (¢, 0). If r,(>¢/2)
denotes the radius of one of these circles, then the
semimajor and the semiminor axes of the ellipse into
which it is transformed are, respectively, ry--c*/4r, and
—é*/4ry.  The thickness ratio ¢ is then defined as

_e
t_"“ i, 1—o?
e 1+ot
Ta+47.0 +
or
1—¢
01=1__H
where
= C
0’—27'3

Now, for the case of the elliptic cylinder, equation (12)
becomes:
il 1 rfe®
1ldw ¢ +‘)1rvo 2
To a?— P

11—

_ il 1 re ‘ﬂ) = A
_<em+2m, z 2(422)
or

Ay=e", Appyi=iK @, Ay=etro (o8 —1)
where

T,
2xtgrg

Kg=

Then
2ﬂ+1 An.‘.‘i..;_]_ 4Tl,+1 Z&Am],
Pt P G D) e

4n—|—3 Z.MI-AEHZ
B RSV R

—_—n — p2i = _];_ 1 ) —2
=1Kro(c*—e f’),‘_1 2n+2_n—l—1 il

. Ll 1 1
iR o (1— %) ;ﬁ(z—n s +2)o""

and

= 9n+1 A,A,

R To

et L 1]

=K,ro sin 28 Z 2(74 og 1I— o
Similarly

 oip~n Andnis _: Z?n-Ab-l-ﬂ = Aon1dsupr
O T Dt 1)rw 6 2 s

ftm] A=l A=l
3 a.!.ﬂ—2

'{'Wz K Z Sn

=16?%r*(1—2¢% cos 28+ %) 2
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and

e Sy AgA
21 ntlntd — -
R.P. e 5§(n+l)roﬁ,

1462 1

. 1
=—7r? gin 28(1—2¢° cos 28+ a“)(2—o_,‘ log =g 2
4n—2

— K sin 2ﬁZ}

Therefore, since m—O and »=0_for an elliptic profile,
equation (20) becomes:
1-|—a’2 1 )

M, M¢[1+:, Bey 2olcos2;3+o-)<m1

1 1+ 1
;’;f— A e Llog (1o )] @21)

where M¢=§p0170262 gin 28.

+5K ¢

For thick profiles, or for small values of ¢, this formula
may be expressed as & power series in o. Thus, by
making use of the expansions

log 1+02 2(0’-{— o“+—a-‘°+ )
and

log (1—A)=—(A+3et 302+ )
it follows, from equation (21), that

M¢=M,|:1 +5+5(1—20" cos 2,534—.74)<%+l "+—11r8

u 5,23
te ')+§K‘ 5507 05" Haset - )]
It is seen from this equation that the value of ZM‘A}M‘
i
for the limiting case of a circle, for which =1 or ¢=0, is:
Mc"—Mi_ﬁ 4+5K¢2
M, 2 3

On the other hand, equation (21) shows that, for the
limiting case of & straight-line segment for which ¢=0
or ¢=1 and the angle of attack g is finite,

M—M,
M,
It is to be noted that, although A4,, and therefore M., is

zero when the angle of attack 8 is zero, the ratio

M‘A}‘ZM‘ possesses the limiting value

), fio-r(ismzs-3)]

where K;=2 sin 8, according to the condition that the
rear stagnation point occurs at the end of the major
axis of the ellipse. For the two limiting cases of the
circle and the straight-line segment, this ratio becomes,

respectively:
(Mc—Mc)ﬂ _4p
M, /st 32

Mc—'.Mg> __E
M, )Jizi 32

o=1

and

(23)
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In appendix A, en independent derivation of equa-
tion (21), with K,=0, is obtained by a direct integration
of the pressures over the surface of an elliptic cylinder.
It shows clearly the superiority of the present general
method, in which all integrations are performed along a
circle at infinity.

It is of interest to investigate the effect of compressi-
bility on the center of pressure. If the rear stagnation
pomt is supposed to be at the end of the major axis, it
is J.m.medla,tely seen from the second of equations (18)
that, for s== and Ap=1,

(Uo e 2 sin ﬁ+K,+AK+<Am)

Since K,;=2 sin 8, it follows that the additional circula-
tion AK is given by

().

The problem of determining the additional circulation
thus amounts to finding an expression for An/v, at the
stagnation point §==. This calculation is given in
appendix B and it is shown there that

A—P—%— (M-+N sin® 6)

‘-f

(24)

where M and N sare functions of the thickness coefli-
cient ¢ only. Table I presents values of A and N for
various values of ¢

TABLE I
t M N
1} 1, 00000 «
.1 1,00808 3.44770
.2 1.19225 2. 48668
.8 1.28287 1. ge162
.4 187929 1. 63730
.5 145302 1, 398L3
.6 L 53503 1. 20008
.7 1.61342 1.08754
.8 1. 68016 . 80704
.8 1.76185 77605
10 1,88338 66667

For the straight-line segment, AT/T, equals infinity if
the value of 8 is other than zero but, for very thin
profiles and vanishingly small angles of attack,

T AT g
r, —Llt3

This result agrees with that given by Glauert (reference
3), namely:
THAT_ 1
Te  yl—p

In reference 3, Glauert has also shown that the lifting
force on a body in a compressible fluid is given by

B
1+§+...

Lc= Pt

Lc=L,<1 +§)

or

(25)
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If ¢, and ¢, denote, respectively, the centers of pressure
in the compressible and the incompressible fluids, then
according to equations (23} and (25)

Ce_q

Ct
That is, for a very thin profile and for vanishingly small
angles of attack, the center of pressure is unaffected

by the compressibility of the fluid. For the general
elliptic profiles, it follows from equations (21) and (24)
that

1442 1

e 1+g{1+ (1—2¢® cos 2B+ 6% 2%5 log

i—g ) T4 s’ T los T
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or the motion of the center of pressure away from the
origin is 0.15 percent of the chord. Again, if the angle
of attack is vanishingly small, then cos §==1 and sin f=<8,
and

M, L

e e
17— 114486, 7=1.18174
Then
ce'—ci___
55 = 0.0039
s J1+et . 1462 1

1
sz log 1= |

Cy

It may be shown from this expression that, for any given
ellipse, there exists an angle of attack 8, independent
of the stream velocity z,, to the first order of u, for
which the ratio ¢,/¢; equals unity. Furthermore, if the

angle of aftack is{%::sater}than this neutral value of 8,

reater

then e.fe; is{ S8

}than unity and the center of pres-

farther from
nearer to }the

origin than the center of pressure ¢, in the incompres-
gible fluid. Table I presents the neutral values of 8 for
the entire range of ellipses including the straight-line
profile and the circle.

sure ¢, in the compressible fluid is{

TABLE II
Bpeutral
J cos 28
Degrees | Minutes

[} L. 00000 a 0

.1 . BR302 5 17

.2 .06189 7 56

.3 . 04116 9 53

.4 02178 11 25

& .90348 12 40

.6 . 88687 13 48

7 .87148 i4 42

.8 85005 15 22

.9 84474 18 1
1.¢ . 83338 18 47

As a numerical example, consider an elliptic cylinder
with o thickness coefficient =% and with vfc,=H.
In this case, the neutral angle of attack g is given by
cos 28=0.90348, or §=12°40’. If the angle of attack
is increased to 15°, say, then

M, L
H‘—1.20776, E_1'19345
and
Ce_1.012
Ct
Now
ci=g(1—t)
Therefore
Cc—0C
°,_, m '=0.0015

1+§(M+N sin?B)

or the motion of the center of pressure toward the
origin is 0.39 percent of the chord. In general, when
the angle of attack 8 is vanishingly small, the center
of pressure ¢, in the compressible fluid is nearer to the
origin than the center of pressure ¢; in the incompres-

sible fluid. Table III gives values for ( ‘%)B for
N @ -

various velues of ¢ and for the critical values of x.3

TABLE IIT
n s ‘_t—ff)
t it (C-')H ( 2¢ /gy
] 1. 00000 1. 00000
.1 73445 . 97060 —. 00450
.2 . 51608 . QrgsR —. 00602
.3 48077 . 96458 —. 00620
.4 30514 . 96154 —. 00877
.8 88203 . 86038 —. 00485
.6 804 . 95971 —~. 00403
.7 . 25120 . 98003 —. 00300
.8 22212 . 96037 —. 00198
.9 . 18714 .geIts —. 00007
1.0 . 17610 . 06204 Q

THE SYMMETRICAL JOUEKOWSKI PROFILE

The Joukowski profiles are derived by means of the
conformal transformation

2
;=z’+§'—,

which maps the circle of radius @ with its center at the
origin of the 2’ plane into a line segment (—2¢, 0; 2a, 0)
in the { plane. Any other circle of radius 7,(>¢) with
its center lying on the real axis at a distance ae from O
(see fig. 4) and touching the base cirele at (—a, 0) is
mapped into a symmetrical Joukowski profile with a
sharp trailing edge. The variebles z and 2’ are con-
nected by the equation

2'=eat2z

The circulation Ty is chosen in accordence with the
Kutta-Joukowski hypothesis that the rear stagnation
point of the flow occurs at the point A of the circle. In

3 The critical value of g Is defined as that valne of s at which the maximum velocit
of the fluid at the surface of the obstacla just attains ths local veloelty of sound.
1list of such values of u for a set of emftic cylinders with the angle of attack equsl to
zero is given in tab]egv of reference 4.
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terms of the complex coordinate z, the potential func-
tion of the flow past the circle is
ze

T
'w=vu(ze‘ﬁ+ ze")-l- 2 T

The complex velocity at the point A is then given by
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where
. (11— & 2n+1 Aaden
I=R. P.ig a2 n Ty ri
. .ieilﬁ = -A::Au-!-z
J=—R. P ot D
and

M, =2xpwia? [1 +e(l+¢€)] sin 28

17 o

.__' ) ’/’_\B‘ ]

dw g T:Pf
@ _ 8— g~y — ——t
d 0= v‘)(e lﬂ) 27”‘0
Therefore
=4xv4r, sin 8 ar K,;=2 gin B
vy
L T
- k—aZEC
a 'l'o
A
—4 ol |a 518

XX \—:_*_\a 3

Y

FIGURE 4.—Transformation of & symmatrical Joukowsk{ profile inte a circle.

The complex velocity in the ¢ plane is given by

dw_dwdz d2__(2+70) (ze8—roe~ )22
&t dedz At 0 ZZ+ta)(F—a)
Then, since
2 +a=z+a(l+e&=2-+r and 2’ —a=z—a(l—e¢)
it follows’that
73
ldw <1+ )(e‘ﬂ—-—e )
% ds 1_a,(l——e)
z
Putting —— H‘ =h and 1+ =,
nt
l%{@—n_o = e‘ﬂngk" r°) +(2he"—e“")2rk"<r°) 1

+ (R — 2he“‘5)2k (To) et Zk‘(r")uﬂ

Therefore
Ao=€‘ﬂ, A1=2’l:7'o sin ﬁ, Ag=a28‘*’—r°’e“ﬁ,

and

Ap=atry k"% (ket—e %) for n 538

Equstion (20) giving the moment M, then may be

written as
M, —M,
M,

e(l14+¢ AT
T 1+e(14e) T,

i 3 e(l+4e) (1+¢)?
+‘2[1‘§ TFelito T Tded+9

a+n] @9

In appendix C, closed expressions are derived for I
and J. They may be written as follows:

a+9rd+n =43 E) (1 —ok cos 26-44%)

2
[94 108 2 -+t S St 3e |
+5(3-H28) (1—2k cos 264+9) 45 (0-+5k) (1—cos 26)
1 1
R —B) 4 g5 15+ 5k + 4 (L—)*
For small values of k, or thick profiles,
(14 T+ =EIF ok cos 2ﬂ+k’)<§7z+ e
i Lorluiler )
+§(3+2k) (1—2k cos 2B+k’)+76(9+5k) (1—cos 28)
+%k(1—k)+é(15+5k+4k2) (1—k)* (28)

It remains to evaluate the ratio of the additional cir-
culation AT and the circulation T'; of the incompres-

sible fluid. 'This ratio may be obtained from equation

@7
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(22) of reference 2 by evaluating Azyfp; for == and is
written as follows (see appendix D):

AT 1 Aiﬁ)
I‘; 2 sin D

3 =L+ Nsing)  (29)

where M and N depend only on the thickness coefficient
¢ of the profile. Table IV lists values of M and N for
several values of e.

TABLE IV
€ M N
] 1. 00000

- -
1.03242 8.76210
1.05466 8.73331

10 L 11153 2.88685
1, 21859 2.17388

.30 1.32617 1.80502
.40 1. 40025 1. 56348
.50 L 45044 1. 38092

It is interesting to note that A4=1 for 2 straight-line
profile but that /V is infinite on account of a term eon-
taining log e. For very thin profiles and vanishingly
small angles of attack, however,

T -I-AI‘

This result agrees with Glauert’s well-known formula
(see section on the e]]iptic cylinder)
I'f"["Ar I‘
It follows from equa.t-lons (26) and (27) that, for an
infinitely thin profile with an angle of attack so small
that sin S=<8 and cos a1,

=1+ (1)

With L,=pw,(T';+AT) and L,=py,T;, it therefore
follows from equations (30) and (31) that

or
gl:=1 (as in the case of the ellipse).
cording to equations (26) and (29),

(149
¢ 1+—[1+1'€F€(1-€F)

In general, ac-

T (149
SHMAN sintp 4 SEE S04 |

In order to gain some ides as to the order of magnitude
of the movement of the center of pressure due to com-
pressibility, consider the case of a thin profile, say

€=0.05. Then equation (32) becomes
. 1+ ;-‘(7.00142—5.95991 cos 28)
& '

1+§(2.92162—1.86666 cos 28)

Letting ¢ and ¢ coincide, 1. e., e./es=1, yields

cos 28=0.99671
or a neutral angle

B=2°20"
If the angle of attack is taken to be 0°, then

c.__14-0.52075 n
e 140.52748 p

which shows that ¢, is nearer the origin than ¢, Iiis
seen that the movement of the center of pressure is
very small. Thus, even for a large value of /ey, say
0.70, the center of pressure moves only about 0.07 per-
cent of the chord toward the origin.

Again, if the angle of attack is increased to 4°,

¢, 140.54975 u
¢, 1+0.53656 &

which shows that ¢, is nearer the nose of the profile
than ¢,, The center of pressure in this case, with
t/c;=0.70, moves about 0.13 percent of the chord
toward the noss.

This numerical example indicates that, although the
effect of compressibility on the lift and the moment of
& thin airfoil may be large, namely

Lc—Li_ Mc—ﬂ-{i_
I, =0.25517, T—O.25847
for
$=0°, 2=0.70
€
and
L—L, M. —M,
T—026938 7, =0.26291

32)

1+5(34+N sin’s)

Again, as in the case of elliptic cylinders, a neutral
value for g is obtained when the centers of pressure in
the compressible and the incompressible fluids coincide.
It may be shown by means of numericel examples that,
when the angle of attack is less than the neutral value
of B, the center of pressure ¢, in the compressible fluid
moves from its position ¢; in the incompressible fluid
toward the origin and that, when the angle of attack
is greater than the neutral value of B, the center of
Ppressure ¢, moves foward the nose of the profile.

for
g=4°, -—0 70

the effect on the center of pressure may be considered
negligible.

As an example of a thicker airfoil, let e=0.10. The
thickness of Joukowski airfoils is proportional to ¢ and
a value of € of 0.10 gives & maximum thickness of about
0.13 times the chord, a value rarely exceeded in practice.
For this case, equation (32) becomes:
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. 1+§(5.43168—4.34449 cos 28)

Cy

1+-2‘f(2.55446—1.44293 cos 28)

Putting ¢,/e,=1 yields

cos 28=0.99161
or a neutral angle
8=3°42’

If the angle of attack is taken to be 0° and 0y/c;=0.70,
then
¢, 1.26636
¢ 1.27232

or the center of pressure is displaced toward the origin
a distance equal to 0.12 percent of the chord.
If the angle of attack is mcreased to 6° with |
v5/ce=0.70, then -
c._1.28962 .
¢, 1.28005 =1.00748

or the center of pressure is displaced toward the nose
of the airfoil a distance equal to 0.19 percent of the
chord.

=0.99531

CONCLUDING REMARKS

It has been shown that, for a thin airfoil and for
small angles of attack, the moment is given by equation
(31):

M¢=M,(1 +£

This result is, however, limited to small values of .
On the other hand, Glauert (reference 3) has shown
that the lift on an airfoil in a compressible fluid is

given by
L By oL,
‘,1_#—L¢<1+2+ )

The validity of this formula depends on the assumption
that the velocity at the surface of the airfoil does
not differ appreciably from the undisturbed velocity o,
although the velocity in the undisturbed stream may
be large. This assumption means that the airfoil must
be thin and the angle of attack small. The similarity

L=

of the two preceding formulas, insofar as the first power

of 1 is concerned, strongly suggests that the expression
for the moment on a thin airfoil at small angles of attack
and for large stream velocities is given by:

M

This result is indeed implied in Glauvert’s work, where

it is stated that the lift distribution along the chord

remains unaltered but that the strength of each ele-
mentary vortex is increased by the factor (1—u)—+,

In view of this discussion, it would appear that a
more accurate expression for the moment M, may be
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obtained by introducing the factor (1-—;;)—* into equa-
tion (20). Thus, equation (20) is replaced by

Mc=;/1if—u{Mi+ aoATM cos (B+0)

+§[—§mr¢m cos (B+a)

2n+1 .11 AR'H
ol R B S
A4,
—2mpe* R. P. wmnz.:'——T—n+1 ‘;’h

This formula differs from equation (20) in that it is
valid for large stream velocities and differs from equa-
tion (33) in that it estimates the effect of large dis-
turbances to the main flow #, because of the presence
of an obstacle.

As “an example, consider the case of symmetrical
Joukowski airfoils with sharp trailing edges. Equa-
tion (26) is then replaced by

M, [ , _€(l14¢ AT
1— yl T14e(1+¢) I‘t

e(1+¢) (1+¢)
+‘[ 2 TFe(ito T +eﬁ+e)(I+J)]} (35)

In an analogous manner, the formula for the lift becomes

- L, B .
I, ﬁ[wzc 1+ MAN sm’ﬁ)]

(34)

M=

(36)

As & numerical example, consider an airfoil {or which
¢=0.10. For this case
' M=1.11153
=2.88585
AT o 2
-1;—=—(1 11153+42.88585 sin?B)

and
(1+e*(I+4J)=4.80317—4.66360 cos 28

Table V gives the values of % ﬁ—f and of (14+&3(I+J)

for several angles of attack.

TABLE V
B 240 (14riI+Ja)
(deg.) aly

0 1. 11153 0. 13951

2 1. 11505 . 16088

4 1. 12557 . 18480

-] 1, 14306 L2141

8 1.18748 . 32018
10 1. 19856 . 42078

Table VI lists the values of the ratios Af,/M; and
L./L, as given by equations (35) and (36), respectively,
for various values of #y/es. The last column gives the
values of M,/M, (or L,/L,) celculated from equation
(33).
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TABLE VI
M, L
My i
1
l—p
N 0 2 4 8 8 10 0 2 s 6 8 10
a
0 1.00000 | 1.00000 | 1.00000 | L.000GO | 1.00000 | 1.00000 | 1.00007 | Loooda | 1.0n000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
.40 L.09871 1.09%4 1. 10249 1. 10700 11840 1.]2185 1, 10084 1.10114 1. 10208 1. 10359 1. 10572 1. 10843 1.00110
.50 1.16732 1. 1A885 L 17342 1. 18102 1.19188 1. 20513 1. 17083 1.17134 1. 172%5€ 1. 17538 1.17890 1.18339 1, 15478
.60 1. 28962 1.27200 1. 27913 1.20008 L 30749 1, 32857 1. 27509 1. 27889 1.27826 1. 28219 1. 28767 1. 20467 1. 25000
.70 1,43005 1.43383 1.44469 1.48276 L 4874 1. 52008 1,43854 1. 43073 1 44338 1, 44936 1,45772 1.46840 1.40028
.75 1. 85347 1. 56693 1. 58683 L 62058 1.46038 L. 55082 1. 56081 1 58529 1.57272 1. 58308 1. 50682 1. 51180
.80 1. 71817 1.71882 17357 1.76370 1.80203 1.85%01 L. 72615 L. 72808 1.738364 L. 74297 1, 75506 1.77266 1. 66687
.85 L 95812 I,08538 1.98710 2, 02821 2.07353 2. 13T 1.97480 L #7722 L 08443 199043 201814 2. 03448 1,80832
Figures 5 and 6 show graphs based on table VI with 2z
MM, and L,L,, respectively, as ordinates and the AT
Mach number #yf¢, as the abscissa. The dashed curves 2.0 (') .,)
represent the Glauert approximation ;/
1
‘_z_"_f_"= L¢= 1 )9 r8 1/’
M, I, Vi—g ff / '
/
It is seen from an examination of the table and the 6 N
curves that, below the neutral angle of attack (in this P
case 3°42’), the Glauert approximation is better for the 4 Pl
moment than for the lift but that, above this angle, the ¥4 i
approximation is better for the lift than for the mo- 12 e
&2 £0 1"
1 g Jo 20 30 40 50 60 70 8o
2.0 =07 Y,
/ %
07( // F1oURE 6.—Tha variation of the ratio LJLy with the Mach number ofcs.
118 I’
%f ’ ,/ ment. In any case, it appears that, at least for thin
‘16 . //, 4 airfoils and for smell angles of attack, the Glauert ap-
. /¥ proximation for both the moment and the lift is suffi-
14 W% ciently good. It then follows that the effect of com-
% pressibility on the center of pressure is negligible.
7
LE e
PP o i
_-‘%‘4
137) —
(0] fe 20 . 40 . . .
30 % S0 &0 .70 .80 LaNGLEY MEMORIAL AERONAUTICAL LABORATORY,
) NaTionNaL Apvisory COMMITTEE FOR AERONATTICS,

Ficrvre 5—The variation of the ratio A /AL with the Mach number ré/cr.

LawereEY Figrp, Va., March 24, 1939.



APPENDIX A

EFFECT OF COMPRESSIBILITY ON THE COUPLE ABOUT
AN ELLIPTIC CYLINDER
The moment on 8 body due to the fluid motion is,
according to equation (1), given by

ﬂf=—j;[rn]pds

where the positive direction of the normal vector n is
taken from the body into the fluid. The components
of the vectorsr and n are, respectively, (z, ) and (cosnr,
cos ny). _
Therefore

[r n]=2 cos ny—y cos nz

From figure 1, it is seen that

dr=ds cos ny and dy=—ds cos nz
Hence ' '

=Gz da-+y d)=—3fp

Now, the equations of transformation from Cartesian
to elliptic coordinates are:

z=c cosh £ cos 5, y=c sinh £ gin g
or
z2=c cosh (¢4in)

where £ takes on all values from zero to infinity and »
takes on all values from 0 to 2z, Then f=constant
and n=constant represent confocal ellipses and hyper-
bolas, respectively, the distance between the foci being
2e¢.

For any given ellipse (=« say,

z=c¢ cosh a cos v, y=¢ sinh a&in 5

or
r*=¢? (cosh? a cos? 3+ sinh? a sin? 3)
Then
dr*=—¢*sin 29 dy
Therefore

1 o,
M=—‘¢L p sin 20 dn
Now, according to equation (7), the pressure p in a
compressible fluid is given by
1 1 1 g
p=constant §povoz—zypov;’+§pp;%'+ e -
g0 that
1 . 1 L
M.=Zpc? fo v sin 2ndn+§upoc’J; o sin 2ndn
_1 a
16# 7)02
The last two integrals in this expression are easily

obtained since they involve a knowledge only of the
594

2%
v sin 2qdy
1)

velocity #; in the incompressible fluid. Thus, suppose
the elliptic eylinder to be in a flow of velocity 2 inclined
at an gngle B to the negative direction of the real axis
and the circulation to be taken as zero. Then, if ry is
the radius of the circle into which the ellipse {=a is
mapped by the Joukowski transformation,

cz
pa— —
2=z +4z,

and the complex potential of the flow past the circle is

— 1
Po( e‘s‘i‘zetg

it follows that the complex velocity is given by

18 ré
ldw & 77%®
O A
42
On the surface of the cylinder, 2'=re®. Therefore,
1dw e#—e ™t
n dz _€
1 47'026
and
n_,’ 2 1—cos 2(6+8)
2: 1—243 cos 260+ o
where
=
_27'0

Now, from the Joukowski transformation,

,_zt+F—¢
2

2=

where_the positive sign of the radical has been chosen
in order that the regions at infinity of the z and 2
planes shall eoincide.

Then if (r, y) is replaced by the elliptic coordmatcs
(¢, n), 1. e., z=c cosh (£+1y), it follows that:

2’=§g£+"l
or, on the surface of the cylinder,
¢
18— = gaply
reet=gee
Therefore
oc=¢e"2 and §=y

and

e[1 —cos 2(3+ )]
cosh 2a—cos 2%

P, 1—cos2(n+§6)
a? “1—2¢7%a cos 29+ %
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With this expression for »?fng, it is very easy to calcu-
late the last two integrals in the expression for M..

Thus

1 x
§npoc’ﬁ v;* sin 2ydy

2 1 —
Now
' gin2ngpdy
J; cosh 2a—cos 29
and
r  cos2myd —ona
j; cosh 2oz—c.;?osl,172‘;;:21“3 2 esch Za
Therefore

2r
—énpoc’ﬁ of sin 2ndn=%#rpovu“c’ gin 28
Similarly,

f I  gin 2nq dy
¢ (cosh 2a—cos 27)2

and

J‘ *r  cos 2ny dy
g (cosh 2a—cos 29)?

Hence,

2xe~2"= csch? 2« (coth 2a+-n)

25 .
0 9;‘ an 27)(11)

*[1—cos 2(s+B)]® .

(cosh 2a——cos 2q)t S 27dn
Je__ 2

& _hcose g . sin 28

The sum of the two integrals becomes simply

_1
16_”

——qguaidiee [

1
=SuTpgo’c”

1#”0% c,coshsf:h 2cos 28 . sin 28

It is much more difficult to calculate the first integral
in the expression for M., for it is necessary in this case
to know the velocity ». at the surface of the elliptic
cylinder in a compressible fluid. For this purpose, it
is convenient to make use of equation (13} of reference
2. This equation, when applied to the case of an
elliptic profile, becomes

Ar plcos 28—d°
o Q{Tsm(-f-ﬂ)

+33 @0+ 1) sin [@nt 1+ 4] ﬁ Neetg, d)
—g(zn-l- 1) sin [(2n++1)g—f] L A igy o)
+4 sin Bin cos 2nnf17\2“'1ahd)\

nNe=] 0
—sin 232«-"*-2 cos [(2n+1)7+f]
+sin 2ﬁilo’“" eos [(2n—1)p—f]

12 sin B sin 283 0?2 sin 2m,]

=]
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where A=1y/r, 6=¢/2ry, and the a;.'s are the coefficients
of the cosine terms in the Fourier development of »2/1y?
in the region of flow. ¥or the elliptic eylinder

vé_1—2N cos 2(6+8) -+
22 1—2¢%\ cos 260 *XF

ON A BODY IN A COMPRESSIBLE FLUID

= %ao-[-il (a2 cOS 2n0 by, sin 2n6)
so that
1+ 21 —26> cos 28)
1—ot)t
(14 M) — (1+ oA\ cos 28
S(1—a'2y

dg= 2

dog= 2

(O‘K)h

bu=23(eN)™ sin 28

Now, it is recalled that Avfp, refers to the plane of the
circle into which the elliptic profile is mapped by the
Joukowski transformation. Therefore

v 1 | Av
%2 1—202 cos 21)—|-o"|_2 s (”'I'ﬂ)"'?n

or
ol . _ sin 2y Ay
%2 s 277_1 242 cOS 211_1_0_[2 sin (77+ﬂ)+ B]
But
sin 29

> n—2 o1
T 2e7 cos gL ot Sib 2nn

Therefore, the first integral in the expression for A4,
becomes
4p000 czf Co -2 Sl.Il 2ndn——g—pogo c S].Il 2ﬁ{1 +£[COS 25——0’2

Pl 002 28 4 S n—1)otn [ gy

1—o*

S @nt1)et J; 7\=~~1a2,,+,dx]}

Re=1

+

The last two Integrals in this expression may be written
as

2 Zu) ne" —zj:kz;—x (@2n-2—Gonya}d M

=l

S 1
> af“"ﬁ R IS N

Rus]
=23 s "'_“j:[d’(l +M)— 140"\ cos 28NN

Nl
—S gt 1‘72(1 +2)— (1 +o*A%) cos 28

(14X nen-3d 2\

n=1 1—o#rt
_ 10'2(1+7\‘) (1+46*\) cos 28
=2 f Lt e
Tg2(1 - \f IS DY 2
— [ (a2 008 201 4 ginyane
f’a’(1+7\4) (14 o*7*) cos 2;3{1,)\2 _1—d*cos 28
o 21— o*)\%) ot
+1—2a’ ;?j 2844t o og 1 1—[-03




596

Therefore

Zpic f "% sin 2ndy=2pr'e sin 25{1 +§[°—F—°s 26—<

+21 a’cos2ﬂ 1— o‘coszﬁ

1—ot ot
1—2¢% cos 28+ 1+
=2 log 17—
Finally
Y. . —

M=M‘{1+§[cos ﬁ a’+21 f—?gf 28 1 a"‘acos 28

1 262 cos 28+ o* 1 146"} u cosh 2a—cos 28}

24° 8 T—2|"2" smh2a
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where
M =Zpwic* sin 26
Replacing e~%« by ¢*:
'M¢=M{1 +5

1+cr _1 ):l

This expression agrees with equation (21) when the
circulation is taken to be zero.

45 (1 —2¢% cos 28+ ¢ )(

APPENDIX B

THE CALCULATION OF Auvi/vo FOR AN ELLIPTIC
CYLINDER AT é=7

Equation (13) of reference 2 gives an expression for
Avyfv, independent of the shape of the obstacle. In
order to evaluate Am/v, it is necessary to know the
Fourier development of 52/1,>. For an elliptic cylinder,
with the circulation chosen so that the rear stagnation
point occurs at the end of the major axis, it may be
easily shown by means of the Joukowski transformation
and the complex velocity potential of the flow about a
circular cylinder that:

(142X cos 6+ M)[1—2) cos (§4+28)+ M
vn” 1—26*)\2 cos 26+ o*\'

=%a°+f_‘i(a, cos nf+by sin 76)

where
A=rofr, a=¢/2ry, B is the angle of attack, and r, 6
are the polar coordmates of a point in the region of

flow.
The Fourier series for v#/n® is obtained by making use

of the expansion

1 = 1 3 2\n
1—202N cos 204 oM 1— o'\ [1*'2?;}(0’?\) cos 2ne]

and it may be shown without difficulty that
2(14+22)2
T—a N

%—2[(1 +:4))@ ""}]_-l-—o:}}\ﬂ) cos Qﬂ] (eN)*

__4X(14-2?) sin®g
e v
ben=2X%(c\)* 3 gin 28"

2M\(14)?) sin 28
[EPT

4% cos 28
1— N

( k)zu

( K)Zn

b?u-!-l

Equation (13) of reference 2 may then be written as
Avy
Yy

—3 cos ﬂi)’(n+1)

)d_r=—2‘f[sin B-}-cos an:; (2n+4- l)j:)\""“bz..d A
;)\Nﬁ'nbh“dk
@ 1
—cos ,Sﬂgu @2n+1) j; P S Y, 5 N
© 1 . 1
+2 cos g3 (n-+1) L A8, d\—sin B ﬁ Atgd A
—sin ﬂni} @n+1) olx’"ﬂag,.dx
[--] 1
+2 sin B33 (0-+1) [ ety 100
gm0 0
—sin ﬁi‘.("n+1) f lk’”“az,. AN
nmp - 0 +
+2 sin ﬁi)(n+1)fl>~’“aan+sd7\
. nmp [+
[--] 1
+asin B33 (0+D) [[ Nty
n=0 JO
_2.sin 30 @n+1) f 'x%a,.+,dx:|
LT 0

If the expressions for a, and b, are inserted and the
integrations performed, it follows after considerable
but straightforward labor that

(52),_ =Hein p—23 sin 8615 [(1-+)*log (1-+0)
—(1—0)"log (1—0)] (ein f-+sin 36)
— 5 [+ log (1469 —(1—o%* log (1—o%)lsin 6

L8log 1=t 512

sin 8 log (1447
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The additional circulstion AK is given by

(&)
% Smrx

(See section on the elliptic profile.)
Therefore, with K;=2 sin B, it follows that
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It is interesting to note that, for the limiting case of
a circular cylinder o=0, the foregoing equation yields

AI‘) 11 2 wini ﬁ)
rf circle 2

and compares with Poggi’s result (reference 5)

ON A BODY IN A COMPRESSIBLE FLUID

(r, ctrols 12“

AT _AK .
T K—g (A +N sin®g) For the straight-line profile s=1, it is seen that A{=1
where and N=w. For an infinitely thin profile and a vanish-
3_g2 9 ingly small angle of attack, however,
M=——+7log (1447 (4_11_) _L
PRCL T NRC D S CT I C L4 Jims 2
40t B2 S B and compares with Glauert’s formuls (reference 3):
1+6®, 14+o 2 AT_ 1 1
N— 03 Iog _—1__0_ [1‘[‘108 (1-[‘0'2)] P{ - 1+'J].T;lv_2#+ LI
APPENDIX C
EVALUATION OF I Therefore
@ ont+l AAuy A Aun A, 4, _1-k a_1+k
Zinlntl) r2tl —z.:)l Nt +Z Ty ey itk and Ty 2
4
_3 Au;la_[_g!iyuis { %,(1—2&: cos 26419 Z;'_ Hence - . 1
- "= L4 T="grz" (1—2k 2k|: log — 73
+1'Tk7(1_2k cos 28--&%) 2% (I+e) ( €08 28+4) AT
0 =4
Since —(1 +§k2+§k‘> +5(9-+-5k) (1—cos 26)

._ﬂz:)l%=log (1—), Ay=2ir, sin B, Ay—a’eB—rye~*
and A;=ary(ke®—e%), it follows that

= 2n+1 A Aui

Sin(nfl) rfeh
g1tk

g (1—F)

_ W(l—zlc cos 25+k2)< 1 +§k’+gk“)

.. a
—3t sin —ze‘ﬂ—e“ﬁ)

+%r%<ro “‘—e‘f’)(lce‘ﬁ—e“ﬁ)
Therefore
I=R.P.i — e 2n-+1 A_-:»Anﬂ

2 sin 2ﬂn2.1n(n+ 1) rp?eit

4
_g-‘ %}(1—% cos 28++k%) log (1—&%)

%5(1 —2k cos 2,3—{-](:2)(1 +—k2+~k‘)

om0+ 1—cos 20+ 5 Z0—B(1-5)
Now
e 1 gp=li=¢

5
R (1"
For small values of %, or thick airfoils,
(14 &= (1 +k)2(1—2k cos 2ﬁ+k2)(9—2k+%)y
g o ) FEO+5E) (1—cos 26)

3+ (1—B)*

EVALUATION OF J

& A Aus Ads | AA, A, Aa
E(n—l—l)r”"”’ 2,k + 3t +§ ~
4(1—2k 2
a( c‘(;:: B+]C2)"z=2 ?' zS]II. ﬁ(lce‘ﬂ—e ;ﬁ)

1 a'k(ke‘ﬁ—e ‘5)(-— “5—-e‘5)
___ a*(1—2k cos 28+%%)
4k0

__a*(1—2k cos 28+-k%)
rotk*

log (1—&%)

(1+2 +3 ) 1.—, sin B(ket—e~%)

rn 1de 1+e

209142—40——39

1 a%
+§ -z (fce‘”—e“")(gze“’—s")
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Therefore
_ ik ZnAuH
J=—R.P. sin 2;9,2 (n+1)r#2
4
__a(1—2k cc;j 284-k%) log (1—7)

_a(1— 2lc cos 28+k%) i
(1+ 3‘)
+6—‘;;2(3+2k) (1—2k cos 26-H)

+2ka-n+125(5)
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and
(1+etJ= a—;’%‘)—(l 2k cos 2;9-1—11:2)[/%,i log 1_—179

—(1 +2—+3—) +1(8+2k) (1—2k cos 26+4)

+ak(U— ) g5k (L)
For smasll values of %, or thick airfoils,
(1+e*J=(1+k)*(1—2k cos 26+k’)<1l6k’

st ok .)+-€1-5(3+2Ic)(1—2k cos 26+1Y)
k(L —R) )

APPENDIX D

EVALUATION OF (Avs/vg)s=r FOR THE CASE OF A
JOUKOWSKI PROFILE

According to equation (22) of reference 2, (Avs/vg)smr
takes the following form:

(%)a-.=,2—‘ sin ﬁ{_%+%2(h+2k+2kh’—ghﬂ)
+ %k—)z(ﬂ—?»kh%k—mmgkhs)

8h(1—h)!(2—3h) 1—h
+ s [’fh’——f

+ (I—R)*+2h(1—F) log (1+k)]

FEOP g (1 yaitlog 1+~

{4—7cs—<(h+k)’ 1l 318

2(1 )

B gint
+5 sin’ 8

+ 5 1L 2 log (1— k’)]

+ﬂ§ﬂ’[w_ Lb y (1—hy+2h—h) log (1-I—k)]

__1y4
+ 202 nog (1) + 4k log (18—
where

=Tt Te
When this expression for (Avy/ty)s-r Was obtained, &
slight error was found in equations (18) of reference 2.

The expressions for a,—a; and b;—b; should be as
follows:

dkl

Q—ay

=2—"—°'—,;,?25[k (h+2k)+2h%x=]

2h%A 14+ 23(1—2k cos 28)
k 1—k2\?

and
bi—Fy= —2—"—5"70,—92’3[hm+2k) +2khw]

It is to be noted in the expression for (Avs/tp)i.r that
most of the terms contain powers of k in the denomi-
nator. It appears at first, then, that the coefficients
of sin # and sin® 8 may become infinite for £=0. This
apparent difficulty disappears, however, when (Avy/v)s-x
is expressed as a power series in £. It is then found
that the terms involving reciprocal powers of k cancel
and .the following expression results:

o 680 300, 289, 101, )
=3 s 3( 192 T 166° — 672~ +32 ~gagc + -
£ oo a.f 41 689 13, 1373, 163 )
+35 sin® Bl —57 —56F 24K ~Tog0F ~Be0t — - - -
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